RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2013

FIRST YEAR

Date : 19/12/2013 Time : 11 am - 1 pm CHEMISTRY (General) Paper : I

Full Marks : 25

[Answer <u>one</u> question from each unit]

<u>Unit - I</u>

1.	a) h)	What is nuclear binding energy? Show its variation with increase of atomic number.	[3]
	D)	Calculate the nuclear binding energy per nucleon of C from the following data : C = 12.00000, $n = 1.00893$, $n = 1.00758$ and $d = 0.0005$ amu	[3]
	c)	Calculate the Pauling electronegativity (γ) of jodine in IF from the following data:	[3]
	0)	$E = -140 \text{ K} \text{ Imol}^{-1} \text{ E} = -155 \text{ K} \text{ Imol}^{-1} \text{ E} = -278 \text{ K} \text{ Imol}^{-1} \text{ at } = 4.0$	[2]
	1)	$E_{I-I} = 149$ KJIIOF , $E_{F-F} = 155$ KJIIOF , $E_{I-F} = 278$ KJIIOF , $\chi_F = 40$.	[3]
	d)	Write the electronic configuration of the atom having atomic number 23 and hence predict the position of the atom in the modern long periodic table	[2]
	e)	Why nuclear fusion is known as thermonuclear reaction?	[2]
2	- /	r_{1}	[0]
2.	a) b)	The time taken for disintegration of 90% ¹⁶ F atoms is 356 min. Calculate the half life of ¹⁶ F.	[3]
	0)	No. Mg. Al Si P S Cl Ar	[2]
	c)	Write the IUPAC names of the elements having atomic number 106 and 111	[2]
	d)	Calculate the ionisation energy of a hydrogen atom, given $R = 109700 \text{ cm}^{-1}$.	[2]
	e)	Explain the significance of magnetic quantum number.	[2]
	f)	What is nuclear fission reaction? Give example.	[2]
<u>Unit - II</u>			
3.	a)	Calculate the minimum value of $r + \frac{r}{r}$ required to attain coordination number eight.	[2]
	b)	Why s-orbitals fail to give π -bonding?	[2]
	c)	Suggest the hybridisation of the central atom of the following molecules or ions :	[2]
	,	$NH_4^+, SF_4, XeF_4, BF_4^-$	
	d)	Calculate the lattice energy of Magnesium Sulphide using the following data (all in KCal/mole) :	
		$\Delta H_{f}(Mgs) = -82.2; \Delta H_{Sub}(Mg) = -36.5; IP_{1} + IP_{2} = 520.6; \Delta H(S-atom) = 133.2;$	
		$EA_1 + EA_2 = -72.4$	[2]
	e)	Write IUPAC nomenclature of the following compounds :	
	,	i) $K_3[Fe(CN)_5CO]$ ii) $[Co(en)_2(NO_2)_2]Cl$ [1+1]
	f)	Dipolemoment of NH_3 is greater than NF_3 . — explain.	[2]
4.	a)	Draw the Born-Haber cycle for the formation of the MgBr ₂ crystal from elemental magnesium and	
		bromine.	[2]
	b)	Bond angle in H_2O is 105° and in H_2S it is 92°, —Justify the differences in bond angles.	[2]
	c)	$MgSO_4$ is water soluble while $BaSO_4$ is water insoluble, explain with reasons.	[2]
	d)	Using VSEPR model, predict the structures of the following species : ClF_3 , ICl_4^- .	[2]
	e)	HF has an acid salt KHF ₂ though it is a monobasic acid. —Explain.	[2]
	f)	Why Si-Cl bond in SiCl ₄ is stronger than C-Cl bond in CCl_4 ?	[2]